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The object of this paper is to prove the following theorem: If Y is a closed sub­
space of the Banach space X, then L 1(/l, Y) is proximinal in L 1(/l, X) if and only
if U(/l, Y) is proximinal in U(/l, X) for every p, I < p < 00. As an application of
this result we prove that if Y is either reflexive or Y is a separable proximinal dual
space, then L 1(/l, Y) is proximinal in L 1(/l, X). © '989 Academic Press. Inc.

INTRODUCTION

Let (Q, J.l) be a finite measure space. The space of Bochner p-integrable
functions defined on (Q, fL) with values in a Banach space X is denoted by
U(fL, X). It is well known [1] that U(J.l, X) is a Banach space under the
norm

l~p<oo.

A subspace E in a Banach space F is said to be proximinal if for each
x E F there is at least one y E E such that

Ilx - yll = d(x, E) = inf{ Ilx - zll: zE E}.

The element y is called a best approximant of x in E.
In [3], Light and Cheney proved that if Y is a finite-dimensional sub­

space of the Banach space X, then L '(fL, Y) is proximinal in L '(J.l, X). In
[2], Khalil proved that L' (J.l, Y) is proximinal in L I (fL, X) if Y is reflexive.
In this paper we prove that L '(fL, Y) is proximinal in L '(fL, X) if and only
if U(J.l, Y) is proximinal in U(fL, X), 1 < P < 00. As a consequence, the
result in [2] follows immediately. Further, if Y is a separable proximinal
dual space then L 1(fL, Y) is proximinal in L' (J.l, X).

Throughout this paper, if X is a Banach space, then X * denotes the dual
of X. If Y is a subspace of X, we set y-l = {x* E X*: x*(y) =0 for all
yE T}. The set of real numbers is denoted by R.

All Banach space in this paper are assumed to be real Banach spaces.
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Let X be a Banach space and let Y be a closed subspace of X. The
following is the main result of this paper:

THEOREM 1.1. Let 1 < p < 00. The lollowing are equivalent:

(i) U(j1, Y) is proximinal in U(j1, X)

(ii) L I (j1, Y) is proximinal in L 1(j1, X).

Proof (ii) -+ (iii). Let IE U(j1, X). Since the measure space (Q, j1) is
finite, IE L 1(j1, X). By assumption, there exists gEL1(11, Y) such that
III - gill ~ III - Rill for all hE L 1(j1, Y). By Lemma 2.10 of [4],

11/(t) - g(t)11 ~ 11/(t) - yll

j1-almost everywhere and for all y E Y. Hence

11/(t) - g(t)11 ~ 11/(t) - w(t)11

j1-almost everywhere for all WE U(j1, Y). Since 0 E Y, it follows that
Ilg(t)11 ~211/(t)ll· Hence gEU(j1, Y), and

III - gllp ~ III - wll p

for all WE U(j1, Y).

Conversely. (i) -+ (ii). Consider the map

J: L I (j1, X) -+ U(j1, X)

J(f)(t) = 11/(t)11 1/p-l I(t)

ifI(t) # 0, and J(f)(t) = 0 otherwise. Then

IIJ(f)(t)11 = 11/(t)ll lIP
.

Hence IIJ(f)II;=11/111. Clearly J is (1-1). Further, if gEU(j1,X), then
I(t) = II g(t)11 p-l g(t) E X and 11/(1)11 = II g(t)ll p. Thus IE L 1(j1, X). Further

J(f)(t) = [11/(t)II]I/p -l·llg(t)II P -
1g(t)

= II g(t) III - P • II g(t) II P - I g( t) = g(t).

Hence J is onto. Also J(L1(j1, Y)) = U(j1, Y).

Now, let IE L 1(j1, X). With no loss of generality we can assume that
I(t) # 0 j1-almost everywhere, for otherwise we can restrict our measure to
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the support off Since J(f) E U(/1, X), then by assumption (ii), there exists
some gEL 1(/1, Y) such that

IIJ(f) - J(g)ll p ~ IIJ(f) - J(h )ll p

for all hE L 1(/1, Y). Using the same argument as in Lemma 2.10 of [4], we
get

IIJ(f)(t)-J(g)(t)11 ~ IIJ(f)(t)- yll

/1-almost everywhere for all y E Y. Hence

IIJ(f)(t) - J(g)(t)11 ~ IIJ(f)(t) -llf(t)lll/p-I yll,

/1-almost everywhere for all y E Y. Multiplying both sides of the last
inequality by Ilf( tW -I/p we get

Ilf(t) -llf(t)11 1-I/P '1Ig(t)11 g(t)11 ~ Ilf(t) - yll

for all yE Y. Set w(t)= Ilf(t)III-I/p Ilg(t)III/P-I g(t). Since g(t) is a best
approximant off(t) in Y, and OEy, it follows that Ilg(t)11 ~21If(t)ll. Hence
WE L 1(/1, Y). Consequently

Ilf(t) - w(t)11 ~ Ilf(t) - O(t)1I

/1-almost everywhere for all 0 E L 1(/1, Y), and so g is a best approximant of
fin L 1(/1, Y). This ends the proof of the theorem.

As a corollary to Theorem 1.1, we prove

THEOREM 1.2 [Khalil [2]]. If Y is a reflexive subspace of X, then
L I(/1, Y) is proximinal in L I(/1, X).

Proof The subspace L 2(/1, Y) is reflexive in L 2(/1, X). Hence
proximinal. Theorem 1.1 implies that L 1(/1, Y) is proximinal in L 1(/1, X).
This ends the proof. Q.E.D.

THEOREM 1.3. Let Y = z* ~ X. Then L 1(/1, Y) is proximinal in L 1(/1, X)
if Y is separable and proximinal in X.

Proof Let FE L 2(/1, X) and let XI be the smallest separable closed sub­
space of X that contains the range of F. Let (xn ) be a countable dense
subset of XI and let Fn be a sequence of simple functions such that
lIEn - FI12 -+ O. We can choose each Fn to have values in {x I' X 2, ... }.

Since Y is proximinal each Fn has a best approximant Fn in L 2(/1, Y). In
fact each Fn is simple and Fn(t) is the best approximant of F(t) in Y /1 a.e.
[2]. Let Y I be the smallest closed subspace of Y that contains the range
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of Fn for all n. So YI is separable. We can assume that YI = Y. Let (Yn) be
a countable dense subset in Y I • Set

Then Q is dense in XI and Qn Y I is dense in Y. Further, one can use the
Hahn-Banach theorem to define a sequence of linear functionals (z;*) in
Xf such that IIZ111 = 1 and (z1, Zi >= Ilzill. Since (zJ is dense in XI and
(Z;*) is norming for (Zi) (1lzill =SUPi l(z1, zi>I), then (z;*) is norming for
XI (and for Y). Further (z;*) is total for XI (and for Yd [4, p. 24].

Let E= {h®z;*: hEL2(f.l), i= 1, 2, 3, ... }. Then the Hahn-Banach
theorem and the totality of (z1) imply that E is total for L 2(f.l, Xd.
Further, the density of the simple function (with range in Q) in L 2(f.l, XI)
implies that S(E) = span(E) is norming for L 2(f.l, XI)'

Since L 2(f.l) is reflexive, we use the Cantor diagonalization process to
have a subsequence of (Fn), say (Fnk ), such that limnk (Fnk , t/J> exists for all
t/J E S(E). Let F be the linear functional on L 2(f.l, Y*) defined by (F, t/J> =
lim nk (Fnk' t/J) for all t/J E S(E). The Hahn-Banach theorem can be used to
ensure that FE [L2(f.l, Y*)]*. The fact that Y is a dual space and
IIFn(t)ll~21IFn(t)ll f.l a.e. implies that FEL2(f.l,Y) [4,p.91]. Now let
t/J E S(E), Iit/JII ~ 1, and e> 0 be given. Then

I(F -F, t/J >1 ~ I(F -Fn, t/J >1 + I(Fn-Fn, t/J)I + I(Fn-F, t/J)I

~ II(F-FnIl 2+ IlFn-Fnlll + I(Fn-F, t/J>I·

By choosing n large enough one gets

for all VEL2(f.l, Y). Since e is arbitrary and S(E) is norming for L 2(f.l, XI),
using Theorem 1.1, the result follows. Q.E.D.
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