JOURNAL OF APPROXIMATION THEORY 59, 296-299 (1989)

Best Approximation in $L^{\rho}(\mu, X)$, II

R. KHALIL AND W. DEEB

Department of Mathematics, Kuwait University, Kuwait Communicated by E. W. Cheney Received June 8, 1987

The object of this paper is to prove the following theorem: If Y is a closed subspace of the Banach space X, then $L^1(\mu, Y)$ is proximinal in $L^1(\mu, X)$ if and only if $L^p(\mu, Y)$ is proximinal in $L^p(\mu, X)$ for every $p, 1 . As an application of this result we prove that if Y is either reflexive or Y is a separable proximinal dual space, then <math>L^1(\mu, Y)$ is proximinal in $L^1(\mu, X)$. © 1989 Academic Press, Inc.

INTRODUCTION

Let (Ω, μ) be a finite measure space. The space of Bochner *p*-integrable functions defined on (Ω, μ) with values in a Banach space X is denoted by $L^{p}(\mu, X)$. It is well known [1] that $L^{p}(\mu, X)$ is a Banach space under the norm

$$||f||_p = \left(\int ||f(t)||^p d\mu(t)\right)^{1/p}, \quad 1 \le p < \infty.$$

A subspace E in a Banach space F is said to be proximinal if for each $x \in F$ there is at least one $y \in E$ such that

 $||x - y|| = d(x, E) = \inf\{||x - z|| : z \in E\}.$

The element y is called a best approximant of x in E.

In [3], Light and Cheney proved that if Y is a finite-dimensional subspace of the Banach space X, then $L^1(\mu, Y)$ is proximinal in $L^1(\mu, X)$. In [2], Khalil proved that $L^1(\mu, Y)$ is proximinal in $L^1(\mu, X)$ if Y is reflexive. In this paper we prove that $L^1(\mu, Y)$ is proximinal in $L^1(\mu, X)$ if and only if $L^p(\mu, Y)$ is proximinal in $L^p(\mu, X)$, 1 . As a consequence, theresult in [2] follows immediately. Further, if Y is a separable proximinal $dual space then <math>L^1(\mu, Y)$ is proximinal in $L^1(\mu, X)$.

Throughout this paper, if X is a Banach space, then X^* denotes the dual of X. If Y is a subspace of X, we set $Y^{\perp} = \{x^* \in X^*: x^*(y) = 0 \text{ for all } y \in T\}$. The set of real numbers is denoted by R.

All Banach space in this paper are assumed to be real Banach spaces.

I. PROXIMINALITY RELATIONS IN $L^{p}(\mu, X)$

Let X be a Banach space and let Y be a closed subspace of X. The following is the main result of this paper:

THEOREM 1.1. Let 1 . The following are equivalent:

- (i) $L^{p}(\mu, Y)$ is proximinal in $L^{p}(\mu, X)$
- (ii) $L^{1}(\mu, Y)$ is proximinal in $L^{1}(\mu, X)$.

Proof. (ii) \rightarrow (iii). Let $f \in L^{p}(\mu, X)$. Since the measure space (Ω, μ) is finite, $f \in L^{1}(\mu, X)$. By assumption, there exists $g \in L^{1}(\mu, Y)$ such that $||f - g||_{1} \leq ||f - R||_{1}$ for all $h \in L^{1}(\mu, Y)$. By Lemma 2.10 of [4],

$$||f(t) - g(t)|| \le ||f(t) - y||$$

 μ -almost everywhere and for all $y \in Y$. Hence

$$||f(t) - g(t)|| \le ||f(t) - w(t)||$$

 μ -almost everywhere for all $w \in L^{p}(\mu, Y)$. Since $0 \in Y$, it follows that $||g(t)|| \leq 2||f(t)||$. Hence $g \in L^{p}(\mu, Y)$, and

$$\|f-g\|_p \leq \|f-w\|_p$$

for all $w \in L^{p}(\mu, Y)$.

Conversely. (i) \rightarrow (ii). Consider the map

J:
$$L^{1}(\mu, X) \to L^{p}(\mu, X)$$

 $J(f)(t) = ||f(t)||^{1/p - 1} f(t)$

if $f(t) \neq 0$, and J(f)(t) = 0 otherwise. Then

$$||J(f)(t)|| = ||f(t)||^{1/p}.$$

Hence $||J(f)||_p^p = ||f||_1$. Clearly J is (1-1). Further, if $g \in L^p(\mu, X)$, then $f(t) = ||g(t)||^{p-1} g(t) \in X$ and $||f(t)|| = ||g(t)||^p$. Thus $f \in L^1(\mu, X)$. Further

$$J(f)(t) = \left[\|f(t)\| \right]^{1/p-1} \cdot \|g(t)\|^{p-1} g(t)$$
$$= \|g(t)\|^{1-p} \cdot \|g(t)\|^{p-1} g(t) = g(t).$$

Hence J is onto. Also $J(L^1(\mu, Y)) = L^p(\mu, Y)$.

Now, let $f \in L^1(\mu, X)$. With no loss of generality we can assume that $f(t) \neq 0$ μ -almost everywhere, for otherwise we can restrict our measure to

the support of f. Since $J(f) \in L^{p}(\mu, X)$, then by assumption (ii), there exists some $g \in L^{1}(\mu, Y)$ such that

$$||J(f) - J(g)||_{p} \leq ||J(f) - J(h)||_{p}$$

for all $h \in L^1(\mu, Y)$. Using the same argument as in Lemma 2.10 of [4], we get

$$||J(f)(t) - J(g)(t)|| \le ||J(f)(t) - y||$$

 μ -almost everywhere for all $y \in Y$. Hence

$$||J(f)(t) - J(g)(t)|| \leq ||J(f)(t) - ||f(t)||^{1/p-1} y||,$$

 μ -almost everywhere for all $y \in Y$. Multiplying both sides of the last inequality by $||f(t)||^{1-1/p}$ we get

$$||f(t) - ||f(t)||^{1 - 1/p} \cdot ||g(t)|| g(t)|| \le ||f(t) - y||$$

for all $y \in Y$. Set $w(t) = ||f(t)||^{1-1/p} ||g(t)||^{1/p-1} g(t)$. Since g(t) is a best approximant of f(t) in Y, and $0 \in y$, it follows that $||g(t)|| \le 2||f(t)||$. Hence $w \in L^{1}(\mu, Y)$. Consequently

$$\|f(t) - w(t)\| \leq \|f(t) - \theta(t)\|$$

 μ -almost everywhere for all $\theta \in L^1(\mu, Y)$, and so g is a best approximant of f in $L^1(\mu, Y)$. This ends the proof of the theorem.

As a corollary to Theorem 1.1, we prove

THEOREM 1.2 [Khalil [2]]. If Y is a reflexive subspace of X, then $L^{1}(\mu, Y)$ is proximinal in $L^{1}(\mu, X)$.

Proof. The subspace $L^2(\mu, Y)$ is reflexive in $L^2(\mu, X)$. Hence proximinal. Theorem 1.1 implies that $L^1(\mu, Y)$ is proximinal in $L^1(\mu, X)$. This ends the proof. Q.E.D.

THEOREM 1.3. Let $Y = Z^* \subseteq X$. Then $L^1(\mu, Y)$ is proximinal in $L^1(\mu, X)$ if Y is separable and proximinal in X.

Proof. Let $F \in L^2(\mu, X)$ and let X_1 be the smallest separable closed subspace of X that contains the range of F. Let (x_n) be a countable dense subset of X_1 and let F_n be a sequence of simple functions such that $||F_n - F||_2 \to 0$. We can choose each F_n to have values in $\{x_1, x_2, ...\}$.

Since Y is proximinal each F_n has a best approximant \tilde{F}_n in $L^2(\mu, Y)$. In fact each F_n is simple and $F_n(t)$ is the best approximant of F(t) in Y μ a.e. [2]. Let Y_1 be the smallest closed subspace of Y that contains the range

298

of F_n for all *n*. So Y_1 is separable. We can assume that $Y_1 = Y$. Let (y_n) be a countable dense subset in Y_1 . Set

$$Q = \{y_1, y_2, ...\} \cup \{x_i \colon x_i \notin Y_1\}.$$

Then Q is dense in x_1 and $Q \cap Y_1$ is dense in Y. Further, one can use the Hahn-Banach theorem to define a sequence of linear functionals (z_i^*) in X_1^* such that $||Z_i^*|| = 1$ and $\langle z_i^*, z_i \rangle = ||z_i||$. Since (z_i) is dense in X_1 and (Z_i^*) is norming for (z_i) ($||z_i|| = \sup_i |\langle z_i^*, z_i \rangle|$), then (z_i^*) is norming for X_1 (and for Y). Further (z_i^*) is total for X_1 (and for Y_1) [4, p. 24].

Let $E = \{h \otimes z_i^*: h \in L^2(\mu), i = 1, 2, 3, ...\}$. Then the Hahn-Banach theorem and the totality of (z_i^*) imply that E is total for $L^2(\mu, X_1)$. Further, the density of the simple function (with range in Q) in $L^2(\mu, X_1)$ implies that $S(E) = \operatorname{span}(E)$ is norming for $L^2(\mu, X_1)$.

Since $L^2(\mu)$ is reflexive, we use the Cantor diagonalization process to have a subsequence of (\tilde{F}_n) , say (\tilde{F}_{n_k}) , such that $\lim_{n_k} \langle \tilde{F}_{n_k}, \phi \rangle$ exists for all $\phi \in S(E)$. Let \tilde{F} be the linear functional on $L^2(\mu, Y^*)$ defined by $\langle \tilde{F}, \phi \rangle =$ $\lim_{n_k} \langle \tilde{F}_{n_k}, \phi \rangle$ for all $\phi \in S(E)$. The Hahn-Banach theorem can be used to ensure that $\tilde{F} \in [L^2(\mu, Y^*)]^*$. The fact that Y is a dual space and $\|\tilde{F}_n(t)\| \leq 2\|F_n(t)\| \ \mu$ a.e. implies that $\tilde{F} \in L^2(\mu, Y)$ [4, p. 91]. Now let $\phi \in S(E)$, $\|\phi\| \leq 1$, and $\varepsilon > 0$ be given. Then

$$\begin{split} |\langle F - \tilde{F}, \phi \rangle| &\leq |\langle F - F_n, \phi \rangle| + |\langle F_n - \tilde{F}_n, \phi \rangle| + |\langle \tilde{F}_n - \tilde{F}, \phi \rangle| \\ &\leq \|\langle F - F_n\|_2 + \|F_n - F_n\|_1 + |\langle F_n - F, \phi \rangle|. \end{split}$$

By choosing *n* large enough one gets

$$|\langle F-F,\phi\rangle| \leq 2\varepsilon + ||F_n-V||_2 \leq 2\varepsilon + ||F-V||$$

for all $V \in L^2(\mu, Y)$. Since ε is arbitrary and S(E) is norming for $L^2(\mu, X_1)$, using Theorem 1.1, the result follows. Q.E.D.

REFERENCES

- 1. J. DIESTEL AND J. R. UHL, Vector measures, Math. Surveys 15, 1977.
- 2. R. KHALIL, Best approximation in $L^{p}(I, X)$, Math. Proc. Cambridge Philos. Soc. 94 (1983), 277-279.
- 3. W. A. LIGHT AND E. W. CHENEY, Some best approximation theorems in tensor product spaces, *Math. Proc. Cambridge Philos. Soc.* 89 (1981), 385–390.
- 4. D. VAN DULST, "Reflexive and Superreflexive Banach Spaces," Math. Centre, tracts 102, Amsterdam, 1978.